Decrease in erythrocyte glycophorin sialic acid content is associated with increased erythrocyte aggregation in human diabetes.

نویسندگان

  • M E Rogers
  • D T Williams
  • R Niththyananthan
  • M W Rampling
  • K E Heslop
  • D G Johnston
چکیده

1. Sialic acid moieties of erythrocyte membrane glycoproteins are the principal determinants of the negative charge on the cell surface. The resultant electrostatic repulsion between the cells reduces erythrocyte aggregation and hence the low shear rate viscosity and yield stress of blood. 2. Using g.c.-m.s., a decrease in sialic acid content has been observed in the major erythrocyte membrane glycoprotein, glycophorin A, obtained from nine diabetic patients compared with that from seven normal control subjects [median (range): 3.30 (0.01-11.90) versus 18.60 (3.20-32.60) micrograms/100 micrograms of protein, P less than 0.02]. 3. Erythrocyte aggregation, measured by viscometry as the ratio of suspension viscosity to supernatant viscosity (LS/S) in fibrinogen solution, was increased in ten diabetic patients compared with ten normal control subjects (mean +/- SEM, 37.6 +/- 1.3 versus 33.8 +/- 0.6, P less than 0.02). 4. In the patients in whom both viscometry and carbohydrate analysis were performed, the decrease in erythrocyte glycophorin sialylation and the increase in erythrocyte aggregation in fibrinogen solution were related statistically (LS/S correlated negatively with glycophorin sialic acid content, r = 0.73, P less than 0.05). 5. Decreased glycophorin sialylation provides an explanation at the molecular level for increased erythrocyte aggregation and it may be important in the pathogenesis of vascular disease in diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erythrocyte disaggregation shear stress, sialic acid, and cell aging in humans.

Erythrocyte aggregation, which plays an important role in the physiological behavior of blood fluidity, was found to be enhanced in hypertension and hypercholesterolemia. While the role of macromolecule bridging force has been widely described, cellular factors related to membrane sialic acid content, which might contribute to the negative charge of cell surface causing the repulsion of erythro...

متن کامل

Band 3 glycoprotein and glycophorin A from erythrocytes of children with congenital disorder of glycosylation type-Ia are underglycosylated.

Band 3 and PAS-1 (a dimer of glycophorin A) from erythrocyte membranes of three children with congenital disorder of glycosylation, type Ia (CDG-Ia), aged 1 month, 3 years and 10 years respectively, were examined by a new technique that allowed determination of carbohydrate molar composition of glycoproteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In CDG children...

متن کامل

Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways.

The Plasmodium falciparum erythrocyte-binding antigen 175 (EBA-175) is a ligand for merozoite invasion into human erythrocytes that binds to glycophorin A in a sialic acid-dependent manner. P. falciparum strain W2mef depends on sialic acid for invasion of erythrocytes, whereas 3D7 is sialic acid-independent. We generated parasites that lack expression or express truncated forms of EBA-175 in W2...

متن کامل

Interaction between complement proteins C5b-7 and erythrocyte membrane sialic acid

The initial phase of membrane attack by complement is the interaction between C5b6, C7, and the cell membrane that leads to the insertion of C5b-7. Here we investigate the role of sialic acid residues in the assembly of C5b-7 intermediates on erythrocyte cell membranes. We find that C5b6 binds to glycophorin, whereas C5 or C6 does not bind, and desialylation of the glycophorin abolishes C5b6 bi...

متن کامل

Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A.

Erythrocyte invasion by malaria parasites is mediated by specific molecular interactions. Sialic acid residues of glycophorin A are used as invasion receptors by Plasmodium falciparum. In vitro invasion studies have demonstrated that some cloned P. falciparum lines can use alternate receptors independent of sialic acid residues of glycophorin A. It is not known if invasion by alternate pathways...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical science

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 1992